Manuel technique

Tous les renseignements repris dans ce manuel reposent sur les connaissances techniques actuelles, ils sont cités de bonne foi; leur utilisation et interprétation n'engagent pas la responsabilité de Kabelwerk EUPEN AG.

Les informations suivantes sont généralement applicables sur nos câbles d'énergie. Néanmoins, en cas d'exigences spécifiques du projet, ces valeurs peuvent être ajustées en conséquence.

Le cas échéant, les valeurs ajustées peuvent être trouvées dans notre documentation de projet spécifique. Toute documentation de projet spécifique a priorité sur les informations suivantes.

Sommaire

0	bjectif		9
1.	Cond	ducteurducteur	9
2.	Rens	seignements généraux	
	2.1.	Caractéristiques électriques des fils et torons en cuivre électrolytique et aluminium selon	
		NBN EN 60228	
	2.2.	Calcul de la résistance à des températures différentes de 20 °C	. 13
	2.3.	Conversion des sections AWG en sections métriques	. 14
	2.4.	Propriétés physiques et thermiques de quelques métaux	. 15
3.	Cana	alisations électriques	. 15
	3.1.	Equivalence entre les anciennes désignations belges et les désignations harmonisées	. 15
	3.2.	Intensités de courant admissibles dans les fils et câbles d'installations fixes	. 16
	3.3.	Intensités de courant admissibles dans les fils et câbles d'installation flexible	. 16
4.	Câbl	es d'énergie	. 16
	4.1.	Normes belges	
	4.2.	Domaines de tension	. 17
	4.3.	Choix de la section	. 17
	4.4.	Calcul de l'intensité à véhiculer	
	4.5.	Calcul de la chute de tension	
	4.6.	Intensité admissible	
	4.0.	XVB C _{ca} -s3,d2,a3 0,6/1 kV (NBN HD 604)	
		XFVB C _{ca} -s3,d2,a3 0,6/1 kV (NBN HD 604)	
		XGB C _{ca} -s1,d2,a1 0,6/1 kV (NBN HD 604)	
		XFGB C _{ca} -s1,d2,a1 0,6/1 kV (NBN HD 604)	
		XV flex C _{ca} -s3,d2,a3 0,6/1 kV (adapté à NBN HD 604)	
		XG flex C _{ca} -s1,d2,a1 0,6/1 kV (adapté à NBN HD 604)	
		EXVB E _{ca} 0,6/1 kV (NBN HD 603)	
		EAXVB E _{ca} 0,6/1 kV (NBN HD 603)	
		EAXeVB E _{ca} 0,6/1 kV (NBN HD 603)	
		EXAVB C _{ca} -s3,d2,a3 0,6/1 kV (NBN HD 603)	
		BXB 0,6/1 kV (NBN HD 626)	
		BAXB 0,6/1 kV (NBN HD 626)	
		EVAVB 3,6/6 kV (NBN C 33-121)	
		EXCVB, EXCVB, EXCWB, EXCWB 8,7/15 kV (NBN HD 620 type 10B-A)	
		EXeCVB, EXECVB 8,7/15 kV (NBN HD 620 type 10B-B)	
		EAXCVB, EAXCWB, EAXeCWB 8,7/15 kV (NBN HD 620 type 10B-A)	
		EAXeCVB, EAXeCWB 8,7/15 kV (NBN HD 620 type 10B-B)	
		EXCVB, EXECVB, EXCWB, EXECWB 12/20 kV (NBN HD 620 type 10B-A)	
		EAXCVB, EAXCWB, EAXeCWB 12/20 kV (NBN HD 620 type 10B-A)	
		EXCVB, EXCWB 18/30 kV (NBN HD 620 type 10B-A)	
		EAXCVB, EAXCWB, EAXeCWB 18/30 kV (NBN HD 620 type 10B-A)	
		EXCVB, EXCWB 20,8/36 kV (NBN HD 620 type 10B-A)	
		2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	- - -J

		EAXCVB, EAXCWB, EAXeCWB 20,8/36 kV (NBN HD 620 type 10B-A)	. 46
		EXeCGB C _{ca} -s1,d1,a1 8,7/15 kV (NBN HD 620 type 10B-A)	. 47
		EXeCGB C _{ca} -s1,d1,a1 12/20 kV (NBN HD 620 type 10B-A)	. 48
	4.7.	Intensités admissibles: facteurs de correction applicables aux câbles 0,6/1kV	. 49
	4.8.	Courant de court-circuit	. 55
		Limites de températures et densités k de courant admissibles pendant une seconde	. 56
	4.9.	Systèmes de réseaux	. 57
		TN/TT/IT	. 57
	4.10.	Pose des câbles	. 58
5.	Exer	nple de calcul d'une liaison Basse tension	59
	5.1.	Données	. 59
	5.2.	Marche à suivre	59
6.	Cara	ctéristiques des tourets	. 61
		Contenance des tourets (valeurs indicatives)	62

Objectif

Ce document contient les propriétés techniques générales de nos câbles selon:

désignation	objet de la norme	tension nominale U ₀ /U	type de câble
NBN HD 604	Câbles pour installations, avec et sans armure, à comportement amélioré au feu.	0,6/1 kV	XVB XFVB XGB XFGB XV-FLEX (*) XG-FLEX (*)
NBN HD 603	Câbles de distribution	0,6/1 kV	EXVB EAXVB EAXeVB EXAVB
NBN HD 626	Câbles de distribution avec âmes en cuivre ou aluminium, isolés au PRC, et préassemblés en faisceau.	0,6/1 kV	BXB BAXB
NBN C 33-121	Câbles d'énergie avec âmes en cuivre, sous écran/armure, isolation et gaine en PVC.	3,6/6 kV	EVAVB
NBN HD 620	Câbles de distribution de moyenne tension, à isolation extrudée.	de 8,7/15 kV à 20,8/36 kV	EXCVB / EAXCVB EXCWB / EAXCWB EXeCWB / EAXeCWB EXeCVB / EAXeCVB EXeCGB

^(*) câble adapté à la norme

1. Conducteur

Les conducteurs de nos câbles, en cuivre (Cu) ou en aluminium (Al), sont conformes aux exigences de la norme EN 60228.

Une distinction est faite entre les formes de conducteurs suivantes:

matériel	class	classe 1 classe 2			
du conducteur	circulaire massif	sectorale massif	circulaire multibrins ^[#]	sectorale multibrins	flexible
Cu		******			
Al					******

^[#] pour nos conducteurs, rétreintes pour les sections ≥ 6 mm²

2. Renseignements généraux

2.1. Caractéristiques électriques des fils et torons en cuivre électrolytique et aluminium selon NBN EN 60228

2.1.1. Résistances en courant continu

Ames massives classe 1					
section nominale	résistance maximale de l'âme à 20 °C				
mm²	cuivre nu Ω/km	cuivre étamé Ω/km	aluminium Ω/km		
0,5	36,0	36,7	-		
0,75	24,5	24,8	-		
1,0	18,1	18,2	-		
1,5	12,1	12,2	-		
2,5	7,41	7,56	-		
4	4,61	4,70	-		
6	3,08	3,11	-		
10	1,83	1,84	3,08		
16	1,15	1,16	1,91		
25	-	-	1,20		
35	-	-	0,868		
50	-	-	0,641		
70	-	-	0,443		
95	-	-	0,320		
120	-	-	0,253		
150	-	-	0,206		
185	-	-	0,164		
240	-	-	0,125		
300	-	-	0,100		

Ames câblées									
classe nombre minimal								istance maxim	alo
			brins					de l'âme à 20 °(
section nominale	circu (n	ne Ilaire on einte)	ân circu rétre			ne orale	cuivre nu	cuivre étamé	aluminium
mm²	Cu	Al	Cu	Al	Cu	Al	Ω/km	Ω/km	Ω/km
0,5	7	-	-	-	-	-	36,0	36,7	-
0,75	7	-	-	-	-	-	24,5	24,8	-
1,0	7	-	-	-	-	-	18,1	18,2	-
1,5	7	-	6	-	-	-	12,1	12,2	-
2,5	7	-	6	-	-	-	7,41	7,56	-
4	7	-	6	-	-	-	4,61	4,70	-
6	7	-	6	-	-	-	3,08	3,11	-
10	7	7	6	6	-	-	1,83	1,84	3,08
16	7	7	6	6	-	-	1,15	1,16	1,91
25	7	7	6	6	6	6	0,727	0,734	1,20
35	7	7	6	6	6	6	0,524	0,529	0,868
50	19	19	6	6	6	6	0,387	0,391	0,641
70	19	19	12	12	12	12	0,268	0,270	0,443
95	19	19	15	15	15	15	0,193	0,195	0,320
120	37	37	18	15	18	15	0,153	0,154	0,253
150	37	37	18	15	18	15	0,124	0,126	0,206
185	37	37	30	30	30	30	0,0991	0,100	0,164
240	37	37	34	30	34	30	0,0754	0,0762	0,125
300	61	61	34	30	34	30	0,0601	0,0607	0,100
400	61	61	53	53	53	53	0,0470	0,0475	0,0778
500	61	61	53	53	53	53	0,0366	0,0369	0,0605
630	91	91	53	53	53	53	0,0283	0,0286	0,0469

Ames souples					
	cl	asse 5			
section	diamètre maximal	résistance maxima	le de l'âme à 20 °C		
nominale	des brins de l'âme	cuivre nu	cuivre étamé		
mm²	mm	Ω/km	Ω/km		
0,5	0,21	39,0	40,1		
0,75	0,21	26,0	26,7		
1	0,21	19,5	20,0		
1,5	0,26	13,3	13,7		
2,5	0,26	7,98	8,21		
4	0,31	4,95	5,09		
6	0,31	3,30	3,39		
10	0,41	1,91	1,95		
16	0,41	1,21	1,24		
25	0,41	0,780	0,795		
35	0,41	0,554	0,565		
50	0,41	0,386	0,393		
70	0,51	0,272	0,277		
95	0,51	0,206	0,210		
120	0,51	0,161	0,164		
150	0,51	0,129	0,132		
185	0,51	0,106	0,108		
240	0,51	0,0801	0,0817		
300	0,51	0,0641	0,0654		
400	0,51	0,0486	0,0495		
500	0,61	0,0384	0,0391		
630	0,61	0,0287	0,0292		

Ames extra-souples							
classe 6							
	dia) b	résistance maxima	le de l'âme à 20 °C				
section nominale	diamètre maximal des brins de l'âme	cuivre nu	cuivre étamé				
mm²	mm	Ω/km	Ω/km				
0,5	0,16	39,0	40,1				
0,75	0,16	26,0	26,7				
1	0,16	19,5	20,0				
1,5	0,16	13,3	13,7				
2,5	0,16	7,98	8,21				
4	0,16	4,95	5,09				
6	0,21	3,30	3,39				
10	0,21	1,91	1,95				
16	0,21	1,21	1,24				
25	0,21	0,780	0,795				
35	0,21	0,554	0,565				
50	0,31	0,386	0,393				
70	0,31	0,272	0,277				
95	0,31	0,206	0,210				
120	0,31	0,161	0,164				
150	0,31	0,129	0,132				
185	0,41	0,106	0,108				
240	0,41	0,0801	0,0817				
300	0,41	0,0641	0,0654				

2.2. Calcul de la résistance à des températures différentes de 20 °C

$$R_x = R_0[1 + \alpha (T_x - 20)] \Omega/km$$

 R_{x} = résistance à la température ambiante en Ω/km

 T_x = température ambiante en °C

 α = 0,00393 1/K (pour le cuivre)

 α = 0,00403 1/K (pour l'aluminium)

 R_0 = résistance à 20 °C en Ω /km (voir tableaux ci-dessus)

 $\boldsymbol{R}_{\boldsymbol{x}}$ et \boldsymbol{R}_0 sont des résistances en courant continu.

2.3. Conversion des sections AWG en sections métriques

AWG 4/0 3/0 2/0 1/0 1 2	mm² 107,0 85,0 67,4 53,5 42,4 33,6
3/0 2/0 1/0 1 2	85,0 67,4 53,5 42,4 33,6
2/0 1/0 1 2	67,4 53,5 42,4 33,6
1/0 1 2	53,5 42,4 33,6
1 2	42,4 33,6
2	33,6
3	26,7
4	21,2
5	16,7
6	13,3
7	10,5
8	8,37
9	6,63
10	5,26
11	4,17
12	3,31
13	2,62
14	2,08
15	1,65
16	1,31
17	1,039
18	0,823
19	0,654
20	0,519
21	0,410
22	0,324
23	0,259
24	0,205
25	0,162
26	0,128
27	0,107
28	0,080
29	0,065
30	0,050

Note: Dans beaucoup d'applications en aéronautique et en électronique les sections « AWG » (American Wire Gauge) se sont imposées sur le plan international. Un moyen mnémotechnique qui permet de se familiariser avec ces sections AWG: un fil AWG 30 a une section de 0,05 mm² et la diminution d'une section AWG vers une autre correspond à une augmentation de la section métrique de ±26 %.

2.4. Propriétés physiques et thermiques de quelques métaux

désignation	symbole	poids spécifique kg/dm³	conductivité à 20°C m/Ωmm²	coefficient de température de la résistance 1/K	point de fusion	coefficient de dilatation 1/K (valable entre 0 °C et 100 °C)
Acier	-	7,6 8,4	4 9	0,0050	1400	11 10 ⁻⁶
Aluminium	Al	2,7	36	0,00403	658	23 10 ⁻⁶
AMS	-	2,7	31	0,0036	650	23 10 ⁻⁶
Argent	Ag	10,5	60,5	0,0041	960	20 10 ⁻⁶
Chrome	Cr	6,9	35,8	0,0030	1920	8,5 10 ⁻⁶
Constantan	-	8,8	2,0	±0,00001	1260	15,2 10 ⁻⁶
Cuivre	Cu	8,9	57	0,00393	1084	17,0 10 ⁻⁶
Fer	Fe	7,6 7,9	7 10	0,0066	1535	12,3 10 ⁻⁶
Laiton	-	8,4 8,7	12 15	0,0024	930	18,6 10 ⁻⁶
Mercure	Hg	13,55	1,06	0,0009	-39	182,0 10 ⁻⁶
Nickel	Ni	8,9	11,5	0,0057	1453	12,5 10 ⁻⁶
Or	Au	19,3	43,2	0,0034	1063	14,2 10 ⁻⁶
Plomb	Pb	11,3	4,75	0,0037	327	29,0 10 ⁻⁶

3. Canalisations électriques

3.1. Equivalence entre les anciennes désignations belges et les désignations harmonisées

dénomination HAR	dénomination
H05V-U	VTB
H07V-U	VOB
H07V-R	VOB
H05V-K	VTB/S
H07V-K	VOB/S
H05V-K étamé	VTB/ST
H07V-K étamé	VOB/ST
H05V2-K	VTB/S (90°)
H07V2-K	VOB/S (90°)

3.2. Intensités de courant admissibles dans les fils et câbles d'installations fixes

L'intensité de courant admissible dans les canalisations du type H05V-U; H05V-K; H07V-U; H07V-R; H07V-K; XVB et XFVB; XGB et XFGB installés dans les locaux intérieurs des unités d'habitation, des unités de travail domestique ainsi que dans ceux des parties communes des ensembles résidentiels est fixée par l'intensité nominale des coupe-circuit à fusibles ou la taille du disjoncteur qui protège la canalisation suivant le Règlement général des Installations électriques (RGIE). Voir RGIE en vigueur.

3.3. Intensités de courant admissibles dans les fils et câbles d'installation flexible

Pour connaître les courants admissibles prescrits, veuillez consulter notre fiche technique spécifique «Technical Data for Harmonised cables 100/100 V, 300/500 V, 450/750 V and 1000/1000 V». Vous la trouverez sur notre site web sous «Produits», «Câbles basse tension», «Informations générales».

4. Câbles d'énergie

4.1. Normes belges

désignation	objet de la norme	tension nominale U ₀ /U	type de câble
NBN HD 604	Câbles pour installations, avec et sans armure, à comportement amélioré au feu.	0,6/1 kV	XVB XFVB XGB XFGB XV-FLEX (*) XG-FLEX (*)
NBN HD 603	Câbles de distribution	0,6/1 kV	EXVB EAXVB EAXeVB EXAVB
NBN HD 626	Câbles de distribution avec âmes en cuivre ou aluminium, isolés au PRC, et préassemblés en faisceau.	0,6/1 kV	BXB BAXB
NBN C 33-121	Câbles d'énergie avec âmes en cuivre, sous écran/armure, isolation et gaine en PVC.	3,6/6 kV	EVAVB
NBN HD 620	Câbles de distribution de moyenne tension, à isolation extrudée.	de 8,7/15 kV à 20,8/36 kV	EXCVB / EAXCVB EXCWB / EAXCWB EXeCWB / EAXeCWB EXeCVB / EAXeCVB

^(*) câble adapté à la norme

4.2. Domaines de tension

En courant alternatif, la tension assignée est définie par les trois grandeurs suivantes:

U₀ = tension RMS entre chacun des conducteurs et la terre ou l'écran métallique

U = tension RMS entre conducteurs

 U_m = tension RMS maximale, entre conducteurs, pour laquelle le câble et les accessoires ont été conçus.

En courant continu:

La tension nominale dans un système à courant continu, est exprimée par la combinaison de deux valeurs U_0/U où:

U₀ = tension RMS entre tout conducteur isolé et la terre;

U = tension RMS entre deux phases.

4.3. Choix de la section

Lors de la détermination de la section des conducteurs d'une ligne d'alimentation, il faut tenir compte des points suivants:

a) Effet thermique

- la section choisie doit être telle que l'échauffement produit par les courants qui la traversent (en service et en fin de court-circuit), ne dépasse pas les valeurs de température données au tableau section 4.8.1.
- courant en service: des facteurs de correction sont à appliquer suivant le mode de pose.

b) Chute de tension

Dans le cas d'installations alimentées directement à partir d'un réseau de basse ou de très basse tension, on admet généralement une chute de tension égale à 3 % pour l'éclairage et 5 % pour les autres usages.

Lors de démarrages de moteurs provoquant des appels de courant importants, on peut admettre une chute de tension plus importante.

4.4. Calcul de l'intensité à véhiculer

a) Réseaux à courant continu

$$I = \frac{P}{U}$$

b) Réseaux à courant alternatif monophasé

$$I = \frac{P}{U \cdot \cos \varphi}$$

c) Réseaux à courant alternatif triphasé

$$I = \frac{P}{\sqrt{3} \cdot U \cdot \cos \varphi}$$

I = intensité en Ampères

P = puissance absorbée en Watts

U = tension efficace entre conducteurs en Volts

 $\cos \varphi$ = facteur de puissance

4.5. Calcul de la chute de tension

Dans les formules suivantes interviennent les grandeurs ci-après:

 ΔU = chute de tension en Volts

R = résistance d'un conducteur de phase à sa température maximale de service, exprimée en Ω/km

ωL = réactance exprimée en Ω/km

 $\cos \varphi$ = facteur de puissance

I = intensité en A

l = longueur du câble en km

a) Réseaux à courant continu

$$\Delta U = 2l.R.I$$

b) Réseaux à courant alternatif monophasé

$$\Delta U = 2l . (R . \cos \varphi + \omega L . \sin \varphi). I$$

c) Réseaux à courant alternatif triphasé

$$\Delta U = \sqrt{3} l . (R . \cos \varphi + \omega L . \sin \varphi) . I$$

4.6. Intensité admissible

4.6.1. Conditions de base admises pour le calcul des intensités reprises dans les tableaux ci-après:

a) pose dans le sol ou en caniveaux enterrés et remplis de sable

température du sol: 20 °C

résistivité thermique du sol: 1,0 K.m/W

profondeur de pose: 0,70 m pour câbles de tensions $U \le 15 \text{ kV}$ 1,00 m pour câbles de tensions U > 15 kV

b) pose dans l'air ou en caniveaux fermés et non remplis de sable, ou en caniveaux à demi-ouverts, ou en goulottes fermées ou ouvertes température de l'air: 30 °C

c) pose en fourreau

température du sol: 20 °C

résistivité thermique du sol: 1,0 K.m/W

résistivité thermique du matériau constituant le fourreau: 1,0 K.m/W

profondeur de pose: 1,2 m

Le diamètre extérieur des fourreaux est supposé être au moins égal à 2,5 fois le diamètre extérieur du câble si celui-ci est inférieur ou égal à 65 mm et à deux fois ce diamètre dans les autres cas.

d) Câble moyenne tension: écran mis à la terre des deux côtés.

4.6.2. Conditions particulières

Des facteurs de correction sont à appliquer aux valeurs de base si les conditions diffèrent des conditions de base:

- -la température du sol ou de l'air ambiant: tableaux sections 4.7.1. et 7.7.2.
- -la proximité d'autres câbles pour la pose dans le sol: tableau section 4.7.3.
- -la proximité d'autres câbles pour la pose dans l'air: tableaux sections 4.7.4. et 4.7.5.
- -l'effet caniveaux, goulottes, fourreaux: tableau section 4.7.6.
- -la proximité d'autres câbles pour la pose en caniveaux, goulottes et fourreaux: tableau section 4.7.7.

Les tableaux suivants contiennent des valeurs indicatives.

XVB C_{ca}-s3,d2,a3 0,6/1 kV (NBN HD 604)

	TABLEAU 1A											
Section (mm²)	1 x 16	1 x 25	1 x 35	1x 50	1 x 70	1 x 95	1 x 120	1 x 150	1 x 185	1 x 240	1 x 300	
Diamètre ext. approx. (mm)	10,5	12,0	13,5	14,5	16,5	19,5	21,0	23,0	25,0	28,0	30,0	
Poids approx. (kg/km)	230	330	430	565	780	1090	1340	1625	2010	2530	3105	
Nat. du mat. cond.						CUIVRE						
Rdc à 20 °C (Ω/km)	1,15	0,727	0,524	0,387	0,268	0,193	0,153	0,124	0,0991	0,0754	0,0601	
Rac à 90 °C (Ω/km)	1,47	0,927	0,668	0,493	0,342	0,246	0,195	0,158	0,126	0,0961	0,0766	
L (mH/km)	0,347	0,331	0,313	0,303	0,290	0,290	0,283	0,279	0,274	0,267	0,261	
L (mH/km)	0,803	0,761	0,727	0,701	0,668	0,641	0,623	0,606	0,587	0,566	0,548	
Chute de tension (V/A/km) \circ cos φ = 0,8	2,15	1,39	1,03	0,782	0,569	0,436	0,363	0,310	0,264	0,220	0,191	
Icc pendant 1 sec (kA)	2,29	3,58	5,01	7,15	10,0	13,6	17,2	21,5	26,5	34,3	42,9	
I pose dans l'air (A)	102	135	169	207	268	328	382	443	509	604	699	
I pose dans l'air (A)	128	173	212	258	328	404	471	541	626	749	864	

XVB C_{ca}-s3,d2,a3 0,6/1 kV (NBN HD 604)

TABLEAU 1B														
20			_				3 x 1,5	3 x 2,5	3 x 4	3 x 6	3 x 10	3 x 16		
Section (mm²)	2 x 1,5	2 x 2,5	2 x 4	2 x 6	2 x 10	2 x 16	0U	0U	ou 4 × 4	ou 4 v 6	0U	0U 4 v 16		
							4 x 1,5 9,0	4 x 2,5 10,0	4 x 4 11,0	4 x 6 12,0	4 x 10 14,0	4 x 16 17,0		
Diamètre ext. approx. (mm)	8,5	9,5	10,5	11,5	13,0	16,0	ou ou	ou	ou	ou Ou	ou	ou		
				,-			10,0	11,0	12,0	13,0	15,5	18,5		
							125	165	225	295	430	670		
Poids approx. (kg/km)	110	135	185	235	340	520	ou	ou	ou	ou	ou	ou		
							150	200	275	365	545	835		
Nat. du mat. cond.						CUI	VRE							
Rdc à 20 °C (Ω/km)	12,1	7,41	4,61	3,08	1,83	1,15	12,1	7,41	4,61	3,08	1,83	1,15		
Rac à 90 °C (Ω/km)	15,4	9,45	5,88	3,93	2,33	1,47	15,4	9,45	5,88	3,93	2,33	1,47		
L (mH/km)	0,326	0,305	0,285	0,271	0,256	0,241	0,348	0,328	0,308	0,293	0,279	0,263		
Chute de tension (V/A/km) $\cos \varphi = 0.8$	24,8	15,2	9,52	6,39	3,82	2,44	21,5	13,2	8,2	5,5	3,3	2,1		
Icc pendant 1 sec (kA)	0,215	0,358	0,572	0,858	1,43	2,29	0,215	0,358	0,572	0,858	1,43	2,29		
I pose dans l'air (A)	23	32	42	54	75	100	23	32	42	54	75	100		

XVB C_{ca}-s3,d2,a3 0,6/1 kV (NBN HD 604)

	TABLEAU 1C													
	3 x 25	3 x 35	3 x 50	3 x 70	3 x 95	3 x 120	3 x 150	3 x 185	3 x 240	3 x 300				
Section (mm²)	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou				
	4 x 25	4 x35	4 x 50	4 x 70	4 x 95	4 x 120	4 x 150	4 x 185	4 x 240	4 x 300				
	21,0	25,0	28,0	28,0	32,0	35,0	39,0	43,0	49,0	53,0				
Diamètre ext. approx. (mm)	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou				
	23,0	27,0	31,0	32,0	36,0	40,0	45,0	50,0	56,0	62,0				
	1010	1415	1895	2190	3000	3700	4605	5765	7440	9335				
Poids approx. (kg/km)	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou				
	1285	1780	2405	2895	3980	4930	6110	7660	9875	12420				
Nat. du mat. cond.					CUI	VRE								
Rdc à 20 °C (Ω/km)	0,727	0,524	0,387	0,268	0,193	0,153	0,124	0,0991	0,0754	0,0601				
Rac à 90 °C (Ω/km)	0,927	0,668	0,493	0,342	0,246	0,195	0,158	0,126	0,0961	0,0766				
L (mH/km)	0,265	0,256	0,255	0,256	0,251	0,250	0,251	0,252	0,249	0,247				
Chute de tension (V/A/km) $\cos \varphi = 0.8$	1,37	1,01	0,766	0,557	0,423	0,352	0,301	0,257	0,214	0,187				
Icc pendant 1 sec (kA)	3,58	5,01	7,15	10,0	13,6	17,2	21,5	26,5	34,3	42,9				
I pose dans l'air (A)	127	157	192	246	299	346	399	456	538	620				

XFVB C_{ca}-s3,d2,a3 0,6/1 kV (NBN HD 604)

	TABLEAU 2													
Section (mm²)	2 x 1,5	2 x 2,5	2 x 4	2 x 6	2 x 10	2 x 16	2 x 25	3 x 1,5 ou 4 x 1,5	3 x 2,5 ou 4 x 2,5	3 x 4 ou 4 x 4	3 x 6 ou 4 x 6	3 x 10 ou 4 x 10	3 x 16 ou 4 x 16	3 x 25 ou 4 x 25
Diamètre ext. approx. (mm)	11,5	12,5	13,0	14,0	16,0	18,5	22,0	12,0 ou 12,5	13,0 ou 13,5	14,0 ou 14,5	15,0 ou 16,0	16,5 ou 18,0	20,0 ou 21,5	23,5 ou 26,0
Poids approx. (kg/km)	220	265	330	410	570	520	1110	240 ou 270	295 ou 335	370 ou 430	475 ou 555	670 ou 775	965 ou 1150	1345 ou 1670
Nat. du mat. cond.							CUI	VRE						
Rdc à 20 °C (Ω/km)	12,1	7,41	4,61	3,08	1,83	1,15	0,727	12,1	7,41	4,61	3,08	1,83	1,15	0,727
Rac à 90 °C (Ω/km)	15,4	9,45	5,88	3,93	2,330	1,47	0,927	15,4	9,45	5,88	3,93	2,33	1,47	0,927
L (mH/km)	0,363	0,340	0,314	0,298	0,282	0,265	0,265	0,388	0,365	0,339	0,323	0,306	0,290	0,291
Chute de tension (V/A/km) $\cos \varphi = 0.8$	24,8	15,2	9,53	6,4	3,83	2,45	1,58	21,5	13,2	8,3	5,6	3,3	2,1	1,4
Icc pendant 1 sec (kA)	0,215	0,358	0,572	0,858	1,43	2,29	3,58	0,215	0,358	0,572	0,858	1,43	2,29	3,58
I pose dans l'air (A)	23	32	42	54	75	100	127	23	32	42	54	75	100	127

XGB C_{ca}-s1,d2,a1 0,6/1 kV (NBN HD 604)

			TA	BLEAU	3A						
Section (mm²)	1 x 16	1 x 25	1 x 35	1 x 50	1 x 70	1 x 95	1 x 120	1 x 150	1 x 185	1 x 240	1 x 300
Diamètre ext. approx. (mm)	11,5	13,0	14,0	15,5	17,5	17,5	20,0	21,0	24,0	26,0	29,0
Poids approx. (kg/km)	270	375	475	620	840	1025	1265	1545	1920	2435	3000
Nat. du mat. cond.						CUIVRE					
Rdc à 20 °C (Ω/km)	1,15	0,727	0,524	0,387	0,268	0,193	0,153	0,124	0,0991	0,0754	0,0601
Rac à 90 °C (Ω/km)	1,47	0,927	0,668	0,493	0,342	0,246	0,195	0,158	0,126	0,0961	0,0766
L (mH/km)	0,362	0,344	0,324	0,313	0,299	0,269	0,264	0,262	0,258	0,253	0,248
L (mH/km)	0,805	0,763	0,729	0,703	0,67	0,637	0,618	0,602	0,583	0,562	0,544
Chute de tension (V/A/km) $\cos \varphi = 0.8$	2,16	1,40	1,03	0,785	0,572	0,429	0,356	0,304	0,259	0,216	0,187
Icc pendant 1 sec (kA)	2,29	3,58	5,01	7,15	10,0	13,6	17,2	21,5	26,5	34,3	42,9
I pose dans l'air (A)	102	135	169	207	268	328	382	443	509	604	699
I pose dans l'air (A)	128	173	212	258	328	404	471	541	626	749	864

XGB C_{ca}-s1,d2,a1 0,6/1 kV (NBN HD 604)

TABLEAU 3B													
							3 x 1,5	3 x 2,5	3 x 4	3 x 6	3 x 10	3 x 16	
Section (mm²)	2 x 1,5	2 x 2,5	2 x 4	2 x 6	2 x 10	2 x 16	ou	ou	ou	ou	ou	ou	
							4 x 1,5	4 x 2,5	4 x 4	4 x 6	4 x 10	4 x 16	
Diamètre ext.	8,5	9,5	10,5	11,5	13,0	16,0	9,5 ou	10,0 ou	11,5 ou	12,5 ou	14,0 ou	17,0 ou	
approx. (mm)	0,5	9,5	10,5	11,5	13,0	10,0	10,5	11,5	12,5	14,0	16,0	18,5	
							135	165	235	305	445	695	
Poids approx. (kg/km)	110	140	185	240	345	545	ou	ou	ou	ou	ou	ou	
							165	220	295	385	575	860	
Nat. du mat. cond.						CUI	VRE						
Rdc à 20 °C (Ω/km)	12,1	7,41	4,61	3,08	1,83	1,15	12,1	7,41	4,61	3,08	1,83	1,15	
Rac à 90 °C (Ω/km)	15,4	9,45	5,88	3,93	2,33	1,47	15,4	9,45	5,88	3,93	2,33	1,47	
L (mH/km)	0,326	0,305	0,285	0,271	0,256	0,241	0,348	0,328	0,308	0,293	0,279	0,263	
Chute de tension (V/A/km) $\cos \varphi = 0.8$	24,8	15,2	9,52	6,39	3,82	2,44	21,5	13,2	8,2	5,5	3,3	2,1	
Icc pendant 1 sec (kA)	0,215	0,358	0,572	0,858	1,43	2,29	0,215	0,358	0,572	0,858	1,43	2,29	
I pose dans l'air (A)	23	32	42	54	75	100	23	32	42	54	75	100	

XGB C_{ca}-s1,d2,a1 0,6/1 kV (NBN HD 604)

	TABLEAU 3C													
	3 x 25	3 x 35	3 x 50	3 x 70	3 x 95	3 x 120	3 x 150	3 x 185	3 x 240	3 x 300				
Section (mm²)	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou				
	4 x 25	4 x35	4 x 50	4 x 70	4 x 95	4 x 120	4 x 150	4 x 185	4 x 240	4 x 300				
Diamètre ext.	21,0	24,0	28,0	30,0	31,0	34,0	39,0	43,0	48,0	53,0				
approx. (mm)	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou				
арргох. (ппп)	23,0	26,0	31,0	34,0	36,0	40,0	45,0	49,0	56,0	62,0				
	1045	1395	1955	2350	2985	3685	4590	5745	7425	9315				
Poids approx. (kg/km)	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou				
	1320	1750	2460	3075	3965	4910	6090	7640	9855	12395				
Nat. du mat. cond.					CUI	VRE								
Rdc à 20 °C (Ω/km)	0,727	0,524	0,387	0,268	0,193	0,153	0,124	0,0991	0,0754	0,0601				
Rac à 90 °C (Ω/km)	0,927	0,668	0,493	0,342	0,246	0,195	0,158	0,126	0,0961	0,0766				
L (mH/km)	0,265	0,256	0,255	0,256	0,251	0,250	0,251	0,252	0,249	0,247				
Chute de tension (V/A/km) $\cos \varphi = 0.8$	1,37	1,01	0,766	0,557	0,423	0,352	0,301	0,257	0,214	0,187				
Icc pendant 1 sec (kA)	3,58	5,01	7,15	10,0	13,6	17,2	21,5	26,5	34,3	42,9				
I pose dans l'air (A)	127	157	192	246	299	346	399	456	538	620				

XFGB C_{ca}-s1,d2,a1 0,6/1 kV (NBN HD 604)

	TABLEAU 4														
Section (mm²)	2 x 1,5	2 x 2,5	2 x 4	2 x 6	2 x 10	2 x 16	2 x 25	3 x 1,5 ou 4 x 1,5	3 x 2,5 ou 4 x 2,5	3 x 4 ou 4 x 4	3 x 6 ou 4 x 6	3 x 10 ou 4 x 10	3 x 16 ou 4 x 16	3 x 25 ou 4 x 25	
Diamètre ext. approx. (mm)	12,5	13,5	14,5	15,5	17,5	20,5	25,0	13,0 ou 14,0	14,0 ou 15,0	15,0 ou 16,0	16,0 ou 17,5	18,5 ou 20,0	21,5 ou 23,5	26,5 ou 28,5	
Poids approx. (kg/km)	255	305	370	460	645	900	1310	275 ou 310	335 ou 375	415 ou 475	525 ou 625	750 ou 870	1070 ou 1290	1545 ou 1865	
Nat. du mat. cond.							CUI	VRE							
Rdc à 20 °C (Ω/km)	12,1	7,41	4,61	3,08	1,83	1,15	0,727	12,1	7,41	4,61	3,08	1,83	1,15	0,727	
Rac à 90 °C (Ω/km)	15,4	9,45	5,88	3,93	2,330	1,47	0,927	15,4	9,45	5,88	3,93	2,33	1,47	0,927	
L (mH/km)	0,363	0,340	0,314	0,298	0,282	0,265	0,266	0,388	0,365	0,339	0,323	0,306	0,290	0,291	
Chute de tension (V/A/km) $\cos \varphi = 0.8$	24,8	15,2	9,53	6,4	3,83	2,45	1,58	21,5	13,2	8,3	5,6	3,3	2,1	1,4	
Icc pendant 1 sec (kA)	0,215	0,358	0,572	0,858	1,43	2,29	3,58	0,215	0,358	0,572	0,858	1,43	2,29	3,58	
I pose dans l'air (A)	23	32	42	54	75	100	127	23	32	42	54	75	100	127	

XV flex C_{ca}-s3,d2,a3 0,6/1 kV (adapté à NBN HD 604)

TABLEAU 5												
Section (mm²)	1 x 95	1 x 120	1 x 150	1 x 185	1 x 240	1 x 300	1 x 400					
Diamètre ext. approx. (mm)	19,0	21,0	23,0	26,0	28,0	31,0	35,0					
Poids approx. (kg/km)	1000	1250	1550	1900	2460	3000	3890					
Nat. du mat. cond.				CUIVRE								
Rdc à 20 °C (Ω/km)	0,206	0,161	0,129	0,106	0,0801	0,0641	0,0486					
Rac à 90 °C (Ω/km)	0,263	0,205	0,164	0,135	0,102	0,082	0,062					
L (mH/km)	0,273	0,266	0,263	0,260	0,253	0,249	0,246					
L (mH/km)	0,629	0,607	0,590	0,573	0,550	0,535	0,515					
Chute de tension (V/A/km) \circ \circ \circ \circ \circ \circ	0,454	0,371	0,313	0,272	0,224	0,195	0,166					
Icc pendant 1 sec (kA)	13,6	17,2	21,5	26,5	34,3	42,9	57,2					
I pose dans l'air (A)	328	382	443	509	604	699	818					
I pose dans l'air (A)	404	471	541	626	749	864	-					

XG flex C_{ca}-s1,d2,a1 0,6/1 kV (adapté à NBN HD 604)

TABLEAU 6												
Section (mm²)	1 x 95	1 x 120	1 x 150	1 x 185	1 x 240	1 x 300	1 x 400					
Diamètre ext. approx. (mm)	21,0	23,0	25,0	27,0	30,0	33,0	37,0					
Poids approx. (kg/km)	1090	1345	1670	2030	2620	3190	4105					
Nat. du mat. cond.				CUIVRE								
Rdc à 20 °C (Ω/km)	0,206	0,161	0,129	0,106	0,0801	0,0641	0,0486					
Rac à 90 °C (Ω/km)	0,263	0,205	0,164	0,135	0,102	0,082	0,062					
L (mH/km)	0,288	0,280	0,278	0,273	0,266	0,262	0,258					
L (mH/km)	0,632	0,611	0,594	0,577	0,554	0,539	0,519					
Chute de tension (V/A/km) $\cos \varphi = 0.8$	0,458	0,375	0,318	0,276	0,228	0,199	0,17					
Icc pendant 1 sec (kA)	13,6	17,2	21,5	26,5	34,3	42,9	57,2					
I pose dans l'air (A)	328	382	443	509	604	699	818					
I pose dans l'air (A)	404	471	541	626	749	864	-					

EXVB E_{ca} 0,6/1 kV (NBN HD 603)

	TABLEAU 7A													
Section (mm²)	2 x 1,5	2 x 2,5	2 x 4	2 x 6	2 x 10	2 x 16	2 x 25	2 x 35	3 x 1,5 ou	3 x 2,5 ou	3 x 4 ou	3 x 6 ou	3 x 10 ou	3 x 16 ou
Diamètre ext.	12,0	13,0	13,5	15,5	17,0	18,5	22,0	25,0	4 x 1,5 12,0 ou	4 x 2,5 13,0	4 x 4 14,0 ou	4 x 6 15,5 ou	4 x 10 17,0 ou	4 x 16 25,0 ou
approx. (mm)	12,0	15,0	13,3	15,5	17,0	10,5	22,0	25,0	13,0	ou 14,0	15,0	16,5	18,5	22,0
Poids approx. (kg/km)	190	225	270	360	475	630	920	1220	200 ou 235	245 ou 290	315 ou 370	395 ou 470	545 ou 670	790 ou 970
Nat. du mat. cond.		CUIVRE												
Rdc à 20 °C (Ω/km)	12,1	7,41	4,61	3,08	1,83	1,15	0,727	0,524	12,1	7,41	4,61	3,08	1,83	1,15
Rac à 90 °C (Ω/km)	15,4	9,45	5,88	3,93	2,33	1,47	0,927	0,668	15,4	9,45	5,88	3,93	2,33	1,47
L (mH/km)	0,330	0,309	0,285	0,266	0,251	0,241	0,242	0,234	0,348	0,328	0,308	0,293	0,279	0,263
Chute de tension (V/A/km) $\cos \varphi = 0.8$	24,8	15,2	9,5	6,4	3,8	2,4	1,6	1,2	21,5	13,2	8,2	5,5	3,3	2,1
Icc pendant 1 sec (kA)	0,215	0,358	0,572	0,858	1,43	2,29	3,58	5,01	0,215	0,358	0,572	0,858	1,43	2,29
I pose dans le sol (A)	38	50	65	76	100	125	156	187	30	40	50	65	90	120
I pose dans l'air (A)	26	36	49	63	86	115	149	185	23	32	42	54	75	100

EXVB E_{ca} 0,6/1 kV (NBN HD 603)

TABLEAU 7B													
	3 x 25	3 x 35	3 x 50	3 x 70	3 x 95	3 x 120	3 x 150	3 x 185	3 x 240	3 x 300			
Section (mm²)	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou			
	4 x 25	4 x35	4 x 50	4 x 70	4 x 95	4 x 120	4 x 150	4 x 185	4 x 240	4 x 300			
Diamètre ext.	24,0	27,0	30,0	32,0	35,0	38,0	43,0	48,0	53,0	58,0			
approx. (mm)	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou			
арргох. (ппп)	26,0	29,0	33,0	35,0	40,0	44,0	49,0	54,0	61,0	67,0			
	1165	1545	2110	2580	3430	4170	5205	6450	8295	10280			
Poids approx. (kg/km)	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou			
	1455	1915	2635	3330	4475	5545	6825	8450	10870	13515			
Nat. du mat. cond.		CUIVRE											
Rdc à 20 °C (Ω/km)	0,727	0,524	0,387	0,268	0,193	0,153	0,124	0,0991	0,0754	0,0601			
Rac à 90 °C (Ω/km)	0,927	0,668	0,493	0,342	0,246	0,195	0,158	0,126	0,0961	0,0766			
L (mH/km)	0,265	0,256	0,255	0,256	0,251	0,250	0,251	0,252	0,249	0,247			
Chute de tension (V/A/km) cos φ = 0,8	1,37	1,01	0,770	0,560	0,420	0,350	0,300	0,260	0,210	0,190			
Icc pendant 1 sec (kA)	3,58	5,01	7,15	10,0	13,6	17,2	21,5	26,5	34,3	42,9			
I pose dans le sol (A)	150	175	205	250	305	345	390	440	510	580			
I pose dans l'air (A)	127	157	192	246	299	346	399	456	538	620			

EAXVB E_{ca} 0,6/1 kV (NBN HD 603) EAXeVB E_{ca} 0,6/1 kV (NBN HD 603)

	TABLEAU 8												
Section (mm²)	4 x 16	4 x 35	4 x 50	4 x 95	4 x 150	4 x 240							
Diamètre ext. approx. (mm)	21,0	29,0	33,0	37,0	45,0	56,0							
Poids approx. (kg/km)	555	1130	1460	1925	2800	4445							
Nat. du mat. cond.	ALUMINIUM												
Rdc à 20 °C (Ω/km)	1,91	0,868	0,641	0,320	0,206	0,125							
Rac à 90 °C (Ω/km)	2,45	1,11	0,822	0,410	0,264	0,160							
L (mH/km)	0,265	0,256	0,258	0,252	0,254	0,250							
Chute de tension (V/A/km) $\cos \varphi = 0.8$	3,48	1,62	1,22	0,650	0,449	0,303							
Icc pendant 1 sec (kA)	1,5	3,29	4,7	8,93	14,1	22,6							
I pose dans le sol (A)	88	140	165	245	315	420							
I pose dans l'air (A)	75	125	150	230	300	425							

EXAVB C_{ca}-s3,d2,a3 0,6/1 kV (NBN HD 603)

	TABLE	AU 9A								
	3 x 2,5	3 x 4	3 x 6	3 x 10	3 x 16					
Section (mm²)	ou	ou	ou	ou	ou					
	4 x 2,5	4 x 4	4 x 6	4 x 10	4 x 16					
Diamètre ext.	14,5	15,5	16,5	19,0	23,0					
approx. (mm)	ou	ou	ou	ou	ou					
approx. (IIIII)	15,5	16,5	17,5	20,0	24,0					
Poids approx.	445	540	650	845	1140					
(kg/km)	ou	ou	ou	ou	ou					
(kg/kiii)	500	615	740	990	1340					
Nat. du mat. cond.	CUIVRE									
Rdc à 20 °C (Ω/km)	7,41	4,61	3,08	1,83	1,15					
Rac à 90 °C (Ω/km)	9,45	5,88	3,93	2,33	1,47					
L (mH/km)	0,361	0,339	0,323	0,306	0,290					
Chute de tension (V/A/km) $\cos \varphi = 0.8$	13,2	8,26	5,55	3,33	2,13					
Icc pendant 1 sec (kA)	0,358	0,572	0,858	1,43	2,29					
I pose dans le sol (A)	40	50	65	90	120					
I pose dans l'air (A)	32	42	54	75	100					

EXAVB C_{ca}-s3,d2,a3 0,6/1 kV (NBN HD 603)

TABLEAU 9B												
	3 x 25	3 x 35	3 x 50	3 x 70	3 x 95	3 x 120	3 x 150	3 x 185	3 x 240	3 x 300		
Section (mm²)	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou		
	4x 25	4 x 35	4 x 50	4 x 70	4 x 95	4 x 120	4 x 150	4 x 185	4 x 240	4 x 300		
Diamètre ext.	26,0	29,0	33,0	33,0	36,0	39,0	44,0	49,0	54,0	59,0		
approx. (mm)	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou		
арргох. (ппп)	28,0	31,0	34,0	36,0	41,0	45,0	50,0	55,0	62,0	68,0		
Poids approx.	1580	1970	2605	2870	3735	4485	5715	7015	8825	10880		
(kg/km)	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou		
(kg/kiii)	1695	2130	2800	3620	4810	6075	7385	9055	11600	14400		
Nat. du mat. cond.	CUIVRE											
Rdc à 20 °C (Ω/km)	0,727	0,524	0,387	0,268	0,193	0,153	0,124	0,0991	0,0754	0,0601		
Rac à 90 °C (Ω/km)	0,927	0,668	0,493	0,342	0,246	0,195	0,158	0,126	0,0961	0,0766		
L (mH/km)	0,266	0,282	0,280	0,282	0,276	0,275	0,276	0,277	0,274	0,272		
Chute de tension (V/A/km) $\cos \varphi = 0.8$	1,37	1,02	0,775	0,566	0,431	0,360	0,309	0,265	0,223	0,195		
Icc pendant 1 sec (kA)	3,58	5,01	7,15	10,0	13,6	17,2	21,5	26,5	34,3	42,9		
I pose dans le sol (A)	150	175	205	265	315	360	405	460	530	590		
I pose dans l'air (A)	127	157	192	246	299	346	399	456	538	620		

BXB 0,6/1 kV (NBN HD 626) BAXB 0,6/1 kV (NBN HD 626)

	TABLEAU 10													
Section (mm²)		2x10	4x10	4x16	2x16	3x16	4x16	4x25	3 x 70 54,6	3 x 95 54,6				
Diamètre ext.	ВХВ	13,0	15,5	18,0										
approx. (mm)	BAXB				14,5	15,5	17,5	22,0	40,0	43,0				
Poids approx.	ВХВ	220	440	675										
(kg/km)	BAXB				130	195	260	405	955	1175				
Nat. du mat. cond. CUIVRE							ALUM	INIUM						
Rdc à 20 °C (Ω/km)		1,83	1,83	1,15	1,91	1,91	1,91	1,2	0,443	0,320				
Rac à 90 °C (Ω/km)		2,33	2,33	1,47	2,45	2,45	2,45	1,54	0,568	0,410				
L (mH/km)		0,306	0,306	0,290	0,294	0,294	0,294	0,287	0,273	0,266				
Chute de tension (V, $\cos \varphi = 0.8$	/A/km)	3,84	3,33	2,13	4,03	3,49	3,49	2,23	0,876	0,655				
Icc pendant 1 sec (k/	۹)	1,43	1,43	2,29	1,50	1,50	1,50	2,35	6,58	8,93				
I pose dans l'air (A)		89	74	100	76	76	76	103	209	253				

EVAVB 3,6/6 kV (NBN C 33-121)

TABLEAU 11												
Section (mm²)	3 x 25	3 x 35	3 x 50	3 x 70	3 x 95	3 x 120	3 x 150	3 x 185	3 x 240	3 x 300	3 x 400	
Diamètre ext. approx. (mm)	39,0	42,0	44,0	48,0	48,0	50,0	53,0	57,0	63,0	67,0	74,0	
Poids approx. (kg/km)	2630	3110	3690	4635	5070	5920	6900	8235	10390	12540	15545	
Nat. du mat. cond.	CUIVRE											
Rdc à 20 °C (Ω/km)	0,727	0,524	0,387	0,268	0,193	0,153	0,124	0,0991	0,0754	0,0601	0,0470	
Rac à 70 °C (Ω/km)	0,870	0,627	0,463	0,321	0,231	0,183	0,148	0,119	0,0902	0,0719	0,0562	
L (mH/km)	0,376	0,355	0,340	0,323	0,321	0,312	0,302	0,293	0,288	0,281	0,272	
lcc pendant 1 sec (kA)	2,88	4,03	5,75	8,05	10,9	13,8	17,3	21,3	27,6	34,5	41,2	
l pose dans le sol (A)	120	150	175	215	26	295	330	380	440	495	555	
I pose dans l'air (A)	100	125	150	190	235	270	305	350	410	470	545	

EXCVB, EXeCVB, EXCWB, EXeCWB 8,7/15 kV (NBN HD 620 type 10B-A)

TABLEAU 12							
Section (mm²)	1 x 50/16	1 x 95/25	1 x 150/25	1 x 240/25	1 x 400/35		
Nature du matériau conducteur			CUIVRE				
Rdc à 20 °C (Ω/km)	0,387	0,193	0,124	0,754	0,047		
Rac à 90 °C (Ω/km)	0,494	0,247	0,159	0,0977	0,0627		
C (μF/km)	0,207	0,262	0,307	0,371	0,449		
L (mH/km)	0,441	0,391	0,368	0,345	0,324		
L (mH/km) O T Cm O O O O O O O O O O O O O O O O O O	0,733	0,668	0,632	0,592	0,554		
L (mH/km) odd oo	0,625	0,576	0,553	0,530	0,509		
Icc âme pendant 1 sec (kA)	7,2	13,6	21,5	34,3	57,2		
Icc écran pendant 1 sec (kA)	3,0	4,7	4,7	4,7	6,6		
I pose dans le sol (A)	224	329	418	546	692		
⊙ 7 cm	242	349	436	558	675		
I pose dans l'air (A)	237	361	470	633	833		
	275	417	539	717	919		

d=diamètre extérieur du câble

EXeCVB, EXeCWB 8,7/15 kV (NBN HD 620 type 10B-B)

TABLEAU 13						
Section (mm²)	1 x 50/16	1 x 95/25	1 x 150/25	1 x 240/25	1 x 400/35	
Nature du matériau conducteur			CUIVRE			
Rdc à 20 °C (Ω/km)	0,387	0,193	0,124	0,0754	0,0470	
Rac à 90 °C (Ω/km)	0,494	0,247	0,159	0,0975	0,0623	
C (μF/km)	0,226	0,290	0,337	0,415	0,504	
L (mH/km)	0,444	0,395	0,362	0,334	0,324	
L (mH/km) (pose dans le sol)	0,734	0,670	0,634	0,588	0,554	
L (mH/km) (pose dans l'air)	0,629	0,580	0,547	0,519	0,509	
Icc âme pendant 1 sec (kA)	7,2	13,6	21,5	34,3	57,2	
Icc écran pendant 1 sec (kA)	3,0	4,7	4,7	4,7	6,6	
I pose dans le sol (A) (*)	230	340	430	560	715	
⊙	250	360	445	570	715	
I pose dans l'air (A) (*)	245	370	485	655	860	
	285	430	550	735	945	

d=diamètre extérieur du câble

^(*) Pour des câbles à gaine PVC, un coefficient de réduction de 0,96 doit être appliqué.

N.B.: si nécessaire, tenir compte des coefficients de réduction à appliquer en fonction des conditions particulières de pose.

EAXCVB, EAXCWB, EAXeCWB 8,7/15 kV (NBN HD 620 type 10B-A)

TABLEAU 14							
Section (mm²)	1 x 50/16	1 x 95/25	1 x 150/25	1 x 240/25	1 x 400/35		
Nature du matériau conducteur			ALUMINIUM				
Rdc à 20 °C (Ω/km)	0,641	0,32	0,206	0,125	0,078		
Rac à 90 °C (Ω/km)	0,822	0,411	0,265	0,161	0,101		
C (μF/km)	0,207	0,258	0,300	0,366	0,442		
L (mH/km)	0,436	0,394	0,372	0,344	0,323		
L (mH/km) (pose dans le sol)	0,732	0,673	0,637	0,593	0,556		
L (mH/km) (pose dans l'air)	0,621	0,579	0,556	0,529	0,508		
Icc âme pendant 1 sec (kA)	4,7	8,9	14,1	22,6	37,6		
Icc écran pendant 1 sec (kA)	3,0	4,7	4,7	4,7	6,6		
I pose dans le sol (A)	174	256	325	428	551		
7 cm • •	189	274	345	447	555		
I pose dans l'air (A)	184	280	366	495	662		
	214	326	423	568	744		

d=diamètre extérieur du câble

EAXeCVB, EAXeCWB 8,7/15 kV (NBN HD 620 type 10B-B)

TABLEAU 15							
Section (mm²)	1 x 50/16	1 x 95/25	1 x 150/25	1 x 240/25	1 x 400/35		
Nature du matériau conducteur			ALUMINIUM				
Rdc à 20 °C (Ω/km)	0,641	0,320	0,206	0,125	0,0778		
Rac à 90 °C (Ω/km)	0,822	0,411	0,265	0,161	0,101		
C (μF/km)	0,226	0,285	0,337	0,456	0,497		
L (mH/km)	0,425	0,384	0,375	0,324	0,326		
L (mH/km) O 7 cm	0,728	0,670	0,638	0,569	0,557		
L (mH/km) (pose dans l'air)	0,610	0,569	0,560	0,509	0,511		
Icc âme pendant 1 sec (kA)	4,7	8,9	14,1	22,6	37,6		
Icc écran pendant 1 sec (kA)	3,0	4,7	4,7	4,7	6,6		
I pose dans le sol (A) (*)	180	265	335	440	570		
I pose dans l'air (A) (*)	195	285	355	460	580		
I pose dans l'air (A) (*)	190	290	380	510	685		
	220	335	435	585	770		

d=diamètre extérieur du câble

^(*) Pour des câbles à gaine PVC, un coefficient de réduction de 0,96 doit être appliqué aux courants admissibles. N.B.: si nécessaire, tenir compte des coefficients de réduction à appliquer en fonction des conditions particulières de pose.

EXCVB, EXCVB, EXCWB, EXCWB 12/20 kV (NBN HD 620 type 10B-A)

TABLEAU 16							
Section (mm²)	1 x 50/16	1 x 95/25	1 x 150/25	1 x 240/25	1 x 400/35		
Nature du matériau conducteur			CUIVRE				
Rdc à 20 °C (Ω/km)	0,387	0,193	0,124	0,0754	0,0470		
Rac à 90 °C (Ω/km)	0,494	0,247	0,159	0,0977	0,0625		
C (μF/km)	0,179	0,225	0,262	0,314	0,378		
L (mH/km)	0,450	0,404	0,380	0,356	0,334		
L (mH/km) (pose dans le sol)	0,736	0,672	0,636	0,596	0,558		
L (mH/km) (pose dans l'air)	0,635	0,589	0,565	0,541	0,519		
Icc âme pendant 1 sec (kA)	7,2	13,6	21,5	34,3	57,2		
Icc écran pendant 1 sec (kA)	3,0	4,7	4,7	4,7	6,6		
I pose dans le sol (A)	217	318	404	526	667		
⊙	234	335	418	534	647		
I pose dans l'air (A)	239	363	473	635	836		
	276	416	539	717	922		

d=diamètre extérieur du câble

EAXCVB, EAXCWB, EAXeCWB 12/20 kV (NBN HD 620 type 10B-A)

	•	`		••	•		
TABLEAU 17							
Section (mm²)	1 x 50/16	1 x 95/25	1 x 150/25	1 x 240/25	1 x 400/35		
Nature du matériau conducteur			ALUMINIUM	l			
Rdc à 20 °C (Ω/km)	0,641	0,320	0,206	0,125	0,078		
Rac à 90 °C (Ω/km)	0,822	0,411	0,265	0,161	0,101		
C (μF/km)	0,179	0,221	0,256	0,310	0,373		
L (mH/km)	0,450	0,408	0,384	0,354	0,332		
L (mH/km) (pose dans le sol)	0,736	0,677	0,641	0,597	0,559		
L (mH/km) (pose dans l'air)	0,635	0,593	0,568	0,539	0,517		
Icc âme pendant 1 sec (kA)	4,7	8,9	14,1	22,6	37,6		
Icc écran pendant 1 sec (kA)	3,0	4,7	4,7	4,7	6,6		
I pose dans le sol (A)	169	247	314	412	530		
⊙ 7 cm	183	263	330	428	531		
I pose dans l'air (A)	186	282	368	497	663		
	215	325	422	567	744		

d=diamètre extérieur du câble

EXCVB, EXCWB 18/30 kV (NBN HD 620 type 10B-A)

TABLEAU 18						
					_	
Section (mm²)	1 x 50/16	1 x 95/25	1 x 150/25	1 x 240/25	1 x 400/35	
Nature du matériau conducteur			CUIVRE			
Rdc à 20 °C (Ω/km)	0,387	0,193	0,124	0,0754	0,0470	
Rac à 90 °C (Ω/km)	0,494	0,247	0,159	0,0975	0,0623	
C (μF/km)	0,140	0,172	0,198	0,235	0,279	
L (mH/km)	0,488	0,438	0,411	0,380	0,354	
L (mH/km) (pose dans le sol)	0,748	0,684	0,647	0,605	0,566	
L (mH/km) (pose dans l'air)	0,673	0,623	0,596	0,565	0,539	
Icc âme pendant 1 sec (kA)	7,2	13,6	21,5	34,3	57,2	
Icc écran pendant 1 sec (kA)	3,0	4,7	4,7	4,7	6,6	
I pose dans le sol (A)	217	318	404	526	668	
⊙ _{7 cm} ⊙ ⊙	232	334	418	535	650	
I pose dans l'air (A)	243	367	477	639	841	
	275	414	537	714	918	

d=diamètre extérieur du câble

EAXCVB, EAXCWB, EAXeCWB 18/30 kV (NBN HD 620 type 10B-A)

TABLEAU 19							
Section (mm²)	1 x 50/16	1 x 95/25	1 x 150/25	1 x 240/25	1 x 400/35		
Nature du matériau conducteur			ALUMINIUM				
Rdc à 20 °C (Ω/km)	0,641	0,320	0,206	0,125	0,0778		
Rac à 90 °C (Ω/km) ①	0,822	0,411	0,265	0,161	0,101		
C (μF/km)	0,140	0,169	0,194	0,232	0,275		
L (mH/km)	0,486	0,453	0,425	0,381	0,356		
L (mH/km) (pose dans le sol) 7 cm •	0,747	0,693	0,656	0,607	0,569		
L (mH/km) (pose dans l'air)	0,671	0,638	0,610	0,565	0,541		
Icc âme pendant 1 sec (kA)	4,7	8,9	14,1	22,6	37,6		
Icc écran pendant 1 sec (kA)	3,0	4,7	4,7	4,7	6,6		
I pose dans le sol (A)	169	247	314	412	530		
⊙ 0 ⊙ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	181	262	330	426	532		
I pose dans l'air (A)	189	285	371	500	666		
	214	323	420	564	739		

d=diamètre extérieur du câble

EXCVB, EXCWB 20,8/36 kV (NBN HD 620 type 10B-A)

TABLEAU 20								
Section (mm²)	1 x 95/25	1 x 150/25	1 x 240/25	1 x 400/35				
Nature du matériau conducteur		CUI	VRE					
Rdc à 20 °C (Ω/km)	0,193	0,124	0,0754	0,0470				
Rac à 90 °C (Ω/km)	0,247	0,159	0,0975	0,0622				
C (μF/km)	0,161	0,185	0,218	0,259				
L (mH/km)	0,446	0,418	0,387	0,361				
L (mH/km) O T Cm O O O O O O O O O O O O O O O O O O	0,687	0,650	0,608	0,570				
L (mH/km) (pose dans l'air)	0,631	0,603	0,572	0,546				
Icc âme pendant 1 sec (kA)	13,6	21,5	34,3	57,2				
Icc écran pendant 1 sec (kA)	4,7	4,7	4,7	6,6				
I pose dans le sol (A)	318	404	527	669				
7 cm • •	334	418	535	652				
I pose dans l'air (A)	368	478	641	842				
	414	536	714	920				

d=diamètre extérieur du câble

EAXCVB, EAXCWB, EAXeCWB 20,8/36 kV (NBN HD 620 type 10B-A)

TABLEAU 21							
	1	T	.	.			
Section (mm²)	1 x 95/25	1 x 150/25	1 x 240/25	1 x 400/35			
Nature du matériau conducteur		ALUM	INIUM				
Rdc à 20 °C (Ω/km)	0,320	0,206	0,125	0,0778			
Rac à 90 °C (Ω/km)	0,411	0,265	0,161	0,101			
C (μF/km)	0,159	0,181	0,216	0,256			
L (mH/km)	0,460	0,432	0,388	0,362			
L (mH/km) (pose dans le sol)	0,696	0,659	0,610	0,572			
L (mH/km) (pose dans l'air)	0,645	0,617	0,573	0,547			
Icc âme pendant 1 sec (kA)	8,9	14,1	22,6	37,6			
Icc écran pendant 1 sec (kA)	4,7	4,7	4,7	6,6			
I pose dans le sol (A)	247	314	412	531			
7 cm • •	262	329	426	533			
I pose dans l'air (A)	286	372	501	666			
	323	419	563	739			

d=diamètre extérieur du câble

EXeCGB C_{ca}-s1,d1,a1 8,7/15 kV (NBN HD 620 type 10B-A)

TABLEAU 22							
Section (mm²)	1 x 50/16	1 x 95/25	1 x 150/25	1 x 240/25	1 x 400/35		
Nature du matériau conducteur			CUIVRE				
Rdc à 20 °C (Ω/km)	0,387	0,193	0,124	0,0754	0,0470		
Rac à 90 °C (Ω/km)	0,494	0,247	0,159	0,0975	0,0623		
C (μF/km)	0,207	0,262	0,307	0,371	0,407		
L (mH/km)	0,457	0,409	0,385	0,357	0,346		
L (mH/km) (pose dans le sol)	0,738	0,674	0,638	0,596	0,577		
L (mH/km) o d o o o (pose dans l'air)	0,642	0,594	0,570	0,542	0,531		
Icc âme pendant 1 sec (kA)	7,2	13,6	21,5	34,3	57,2		
Icc écran pendant 1 sec (kA)	3,0	4,7	4,7	4,7	6,6		
I pose dans le sol (A)	224	329	418	546	692		
⊙	242	349	436	558	675		
I pose dans l'air (A)	237	361	470	633	833		
	275	417	539	717	919		

d=diamètre extérieur du câble

EXeCGB C_{ca}-s1,d1,a1 12/20 kV (NBN HD 620 type 10B-A)

TABLEAU 23						
Section (mm²)	1 x 50/16	1 x 95/25	1 x 150/25	1 x 240/25	1 x 400/35	
Nature du matériau conducteur			CUIVRE			
Rdc à 20 °C (Ω/km)	0,387	0,193	0,124	0,0754	0,0470	
Rac à 90 °C (Ω/km)	0,494	0,247	0,159	0,0975	0,0623	
C (μF/km)	0,179	0,225	0,262	0,314	0,378	
L (mH/km)	0,470	0,422	0,396	0,366	0,343	
L (mH/km) (pose dans le sol)	0,742	0,678	0,642	0,599	0,562	
L (mH/km) (pose dans l'air)	0,654	0,606	0,581	0,551	0,528	
Icc âme pendant 1 sec (kA)	7,2	13,6	21,5	34,3	57,2	
Icc écran pendant 1 sec (kA)	3,0	4,7	4,7	4,7	6,6	
I pose dans le sol (A)	217	318	404	526	667	
⊙	234	335	418	534	647	
I pose dans l'air (A)	239	363	473	635	836	
	276	416	539	717	922	

d=diamètre extérieur du câble

4.7. Intensités admissibles: facteurs de correction applicables aux câbles 0,6/1kV.

⇒ Les facteurs de correction ci-dessous sont à appliquer en fonction du type de câble et du mode de pose.

Ces facteurs s'appliquent uniquement aux câbles d'énergie 1 kV selon les normes NBN HD 603 et NBN HD 604 (modèles concernés: voir tableau section 4.1.).

Vu la complexité des modes de pose pour les câbles moyenne tension, nous conseillons, le cas échéant, de consulter la norme NBN HD 620 pour déterminer les facteurs de correction applicables.

4.7.1. Facteurs de correction relatifs à la température du sol

Température du sol (°C)	5	10	15	20	25	30	35	40	45
Câbles à isolation PVC	1,14	1,09	1,05	1,00	0,95	0,90	0,84	0,77	0,71
Câbles à isolation PRC	1,10	1,07	1,04	1,00	0,96	0,92	0,89	0,85	0,79

4.7.2. Facteurs de correction relatifs à la température de l'air

Température de l'air (°C)	10	15	20	25	30	35	40	45	50
Câbles à isolation PVC	1,22	1,17	1,12	1,06	1,00	0,93	0,87	0,79	0,71
Câbles à isolation PRC	1,15	1,12	1,08	1,04	1,00	0,96	0,91	0,87	0,82

4.7.3. Facteurs de correction relatifs à la proximité d'autres câbles (pose dans le sol)

Nombre de câbles multipolaires ou de systèmes de câbles monopolaires	2	3	4	5	6	8	10
Câbles multipolaires 7 cm	0,82	0,76	0,69	0,65	0,61	0,57	0,53
Systèmes de câbles monopolaires							
disposés en nappe 7 cm	0,82	0,73	0,68	0,65	0,62	0,58	0,56
Systèmes de câbles monopolaires disposés en trèfle	0,87	0,78	0,74	0,70	0,68	0,65	0,63

4.7.4. Facteurs de correction relatifs à la proximité d'autres câbles (pose dans l'air sur étagère aérée)

Nombre de câbles multipolaires ou de systèmes de câbles monopolaires	1	2	3	4	5	6	8	10
Câbles multipolaires non jointifs								
	1,00	0,98	0,96	0,95	0,94	0,93	0,92	0,91
Systèmes de câbles monopolaires disposés en trèfle et non jointifs								
≥ d 2 d 2 d	1,00	0,98	0,96	0,95	0,94	0,93	0,92	0,91
Câbles multipolaires jointifs								
	0,95	0,84	0,80	0,78	0,76	0,75	0,74	0,72
Systèmes de câbles monopolaires								
disposés en nappe et jointifs	0,80	0,75	0,75	0,71	0,71	0,70	0,68	0,67
Systèmes de câbles monopolaires								
disposés en trèfle et jointifs	0,80	0,76	0,73	0,72	0,71	0,70	0,68	0,67

d: diamètre extérieur du câble

4.7.5. Facteurs de correction relatifs à la proximité d'autres câbles (pose dans l'air sur étagère <u>non</u> aérée)

Nombre de câbles multipolaires ou de systèmes de câbles monopolaires	1	2	3	4	5	6	8	10
Câbles multipolaires non jointifs								
≥ d	0,95	0,90	0,88	0,87	0,86	0,85	0,84	0,83
Systèmes de câbles monopolaires disposés en trèfle et non jointifs								
≥ d	0,95	0,90	0,88	0,85	0,84	0,83	0,82	0,80
Câbles multipolaires jointifs								
	0,95	0,84	0,80	0,78	0,76	0,75	0,74	0,72
Systèmes de câbles monopolaires disposés en nappe et jointifs								
	0,80	0,75	0,73	0,71	0,71	0,70	0,68	0,67
Systèmes de câbles monopolaires disposés en trèfle et jointifs								
disposes en trene et jointils	0,83	0,76	0,73	0,72	0,71	0,70	0,68	0,67

d: diamètre extérieur du câble

4.7.6. Facteurs de correction relatifs à l'effet caniveaux, goulottes et fourreaux

Section mm²	câble multipolaire	Système de câbles monopolaires
	0,90	0,81
	0,95	0,86
	0,90	0,81
	0,98	0,91
≤ 50 de 70 à 150 de 185 à 400 ≥ 500	0,81 0,80 0,79 -	0,81 0,79 0,76 0,69
≤ 50 de 70 à 150 de 185 à 400 ≥ 500	- - -	0,82 0,80 0,77 0,70
≤ 50 de 70 à 150 de 185 à 400 ≥ 500	- - - -	0,83 0,81 0,78 0,71
	mm² ≤ 50 de 70 à 150 de 185 à 400 ≥ 500 ≤ 50 de 70 à 150 de 185 à 400 ≥ 500 ≤ 50 de 70 à 150 de 185 à 400 de 185 à 400	mm² multipolaire 0,90 0,90 0,95 0,98 ≤50 de 70 à 150 de 185 à 400 ≥500 ≤50 de 70 à 150 de 185 à 400 ≥500 - ≤50 de 70 à 150 de 185 à 400 ce 18

^{*:} non ferreux

d = diamètre extérieur du câble

⁽¹⁾ à appliquer aux courants admissibles dans l'air

⁽²⁾ à appliquer aux courants admissibles dans le sol

4.7.7. Facteurs de correction relatifs à la proximité d'autres câbles pose en caniveaux, goulottes et fourreaux (à multiplier par le facteur du tableau section 4.7.6.)

Nombre de câbles ou de systèmes	(Câbles	multip	S	Système de câbles monopolaires			
,	2	3	4	5	6	2	3	4
1. Caniveau d'usine fermé	0,94	0,90	0,88	0,86	0,85	0,94	0,91	0,89
2. Caniveau d'usine demi-ouvert	0,95	0,91	0,89	0,87	0,86	0,95	0,92	0,90
3. Goulotte fermée	0,94	0,90	0,88	0,86	0,85	0,94	0,91	0,89
4. Goulotte ouverte	0,97	0,93	0,91	0,89	0,88	0,95	0,93	0,91
5. Fourreaux (tuyaux posés à 120 cm de profondeur)								
5.a. un seul tuyau 25 cm 25 cm	0,91	0,85	0,81	0,78	0,76	0,87	0,79	0,75
5.b. trois tuyaux* -en nappe	-	-	-	-	-	0,89	0,81	0,77
-en trèfle	-	-	-	-	-	0,88	0,80	0,76

^{*:} non ferreux d = diamètre extérieur du câble

4.8. Courant de court-circuit

Le court-circuit est un phénomène accidentel apparaissant dans les réseaux dont les câbles font partie.

Les câbles sont soumis à deux genres de sollicitations:

- la première étant celle d'un échauffement rapide et très élevé à maintenir dans des limites compatibles avec la composition même des câbles.
- la seconde étant constituée par des efforts mécaniques considérables auxquels sont soumis les câbles et leurs accessoires au moment où se produit le court-circuit.

4.8.1. Sollicitations thermiques

Le calcul de la section de l'âme en fonction de l'intensité et de la durée du court-circuit se fait à l'aide de la formule suivante:

$$S = \frac{Icc.\sqrt{t}}{k}$$

dans laquelle:

Icc = la valeur efficace du courant de court-circuit exprimée en Ampères

S = la section de l'âme d'un conducteur du câble exprimée en mm²

t = la durée en secondes après laquelle la protection élimine le court-circuit

k = la valeur spécifique du courant de court-circuit (A. \sqrt{s}/mm^2)

Elle dépend:

- de la nature du matériau constitutif de l'âme
- de la température avant court-circuit des âmes des câbles
- des températures finales admissibles, en fonction des connexions réalisées sur les âmes; celles-ci peuvent atteindre:

160 °C pour des connexions soudées

250 °C pour des connexions serties.

La formule n'est plus valable au-delà d'un temps de coupure de 5 sec.

Selon les catégories de matériaux isolants utilisés, on peut admettre les températures finales de surcharge indiquées ci-après. Dans les réseaux comportant des connexions soudées (brasures), il n'est pas recommandé de dépasser la température finale de 160 °C. Les conducteurs étamés ont également une température finale limitée à 200 °C.

Limites de températures et densités k de courant admissibles pendant une seconde

isolant	tensions de	temp	ératures °C	densités de courant en A. \sqrt{s}/mm^2			
des câbles	service U kV	maximale en service	en fin de court-circuit	k pour le cuivre	k pour l'aluminium		
PVC ≤ 300 mm ²	1 et 6	70	160	115	76		
PVC > 300 mm ²		70	140	103	68		
PE	1	70	150	109	72		
PRC	1 à 30	90	250	143	94		
EPR (90 °C)	1 à 6	90	250	143	94		

4.8.2. Sollicitations mécaniques

Les efforts dynamiques dépendant des valeurs de crête des courants de court-circuit peuvent provoquer des déformations des câbles et de leurs accessoires.

Dans les câbles tripolaires, l'assemblage des conducteurs, les enveloppes et les armures peuvent dans certains cas permettre aux câbles de résister à ces sollicitations mécaniques (en cas de besoin concret, veuillez nous consulter).

Les câbles monopolaires seront maintenus en place au moyen de pinces de fixation adéquates (non métalliques), empêchant des échauffements complémentaires.

Les accessoires doivent être solidement fixés aux parois des cellules ou des armoires blindées.

4.9. Systèmes de réseaux

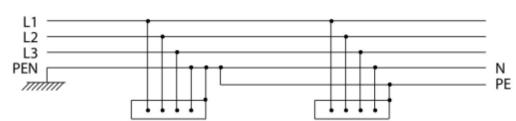
TN/TT/IT

à la terre x₂: côté utilisateur

 $x_1 = T$: liaison d'un point à la terre

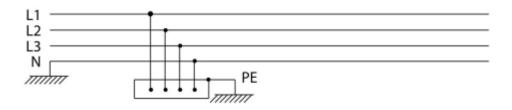
= I: isolation de toutes parties actives de la terre

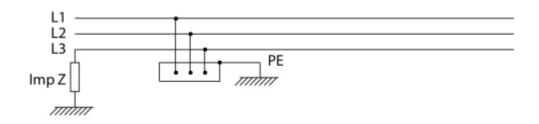
x₂ = T: masses reliées à la terre


= N: masses reliées au point de l'alimentation mis à la terre (neutre)

1) TN


TN-C


TN-C-S


TN-S

2) TT

3) IT

4.10. Pose des câbles

4.10.1. Température de pose

Nous déconseillons de poser les câbles à une température extérieure inférieure à +5 °C. Si cela s'avérait nécessaire, il y a lieu d'entreposer les câbles pendant 24 h dans un local chauffé et de les poser aux heures les plus chaudes de la journée.

Les rayons de courbure admis lors de la pose seront dans ce cas supérieurs à 20 fois le diamètre extérieur du câble.

4.10.2. Rayon de courbure

Les rayons de courbure normalement admis sont de l'ordre de 15 fois le diamètre extérieur du câble. Si le respect de cette règle n'est pas possible, les normes peuvent prévoir la possibilité de réduire ces rayons de courbure.

4.10.3. Force de traction admissible

a) avec tête de tirage:

P = T . A

P = force de traction (N)

A = section totale des conducteurs

T = 50 N/mm² pour le cuivre

T = 30 N/mm² pour l'aluminium

b) avec bas de tirage:

- câbles sans gaine métallique ou armure, force transmise aux conducteurs

 $P = T \cdot A$

P = force de traction (N)

A = section totale des conducteurs

 $T = 50 \text{ N/mm}^2 \text{ pour le cuivre}$

T = 30 N/mm² pour l'aluminium

- câbles avec armure en fils d'acier

 $P = K \cdot d^2$

P = force de traction (N)

 $K = 9 N/mm^2$

d = diamètre extérieur du câble (mm)

- câbles avec armure en feuillards d'acier

 $P = K \cdot d^2$

P = force de traction (N)

 $K = 3 N/mm^2$

d = diamètre extérieur du câble (mm)

4.10.4. Profondeur de pose

La profondeur de pose se situe généralement entre 0,8 m et 1,2 m.

5. Exemple de calcul d'une liaison Basse tension

5.1. Données

Soit à alimenter, à une distance de 260 m, un moteur de 36,8 kW en 400 V triphasé.

Le câble est posé dans le sol à côté de deux autres câbles en service permanent. La température du sol est de 15 °C.

L'intensité du courant de démarrage sera de 3 fois l'intensité du courant normal.

Le rendement du moteur est de 85 %, le cos φ = 0,8 en régime normal et 0,3 au démarrage.

5.2. Marche à suivre

a) Calcul du courant I (voir section 4.4.)

Puissance absorbée en Watts =
$$\frac{36\,800\,W}{0,85}$$
 = **43 294 W**

$$I = \frac{P\,(W)}{\sqrt{3}.\,400.\,0,8}$$
 = **78 A**

b) Choix du câble

Pour la pose dans le sol, un câble du type EXAVB peut convenir.

c) Choix de la section

Facteurs influençant la capacité de transport de courant du câble:

- Température du sol (voir tableau section 4.7.1.): k1 = 1,04
- Proximité d'autres câbles (voir tableau section 4.7.3.): k2 = 0.76 le facteur résultant $k = k1 \cdot k2 = 1.04 \cdot 0.76 = 0.79$
- Pour choisir la section correcte, il faut diviser le courant calculé au point 5.2.a) par ce facteur de correction résultant k; le courant qui en résulte permet de choisir la section minimale dans le tableau 9.

$$I = \frac{78 \text{ A}}{0.79} = 99 \text{ A}$$

On choisit dans le tableau 9A la section 4 x 16 mm² qui permet un transport de courant max. de **120 A.**

d) Chute de tension en régime normal

 $\Delta U = 2,09 \text{ V par A par km (tableau 9A)}$

 $\Delta U = 2,09 . 78 A . 0,26 km = 42V = 10,5 % de la tension nominale$

Cette chute de tension étant trop élevée (max. 5 %), on doit choisir une ou plusieurs sections supérieures.

Choisissons 4 x 35 mm²

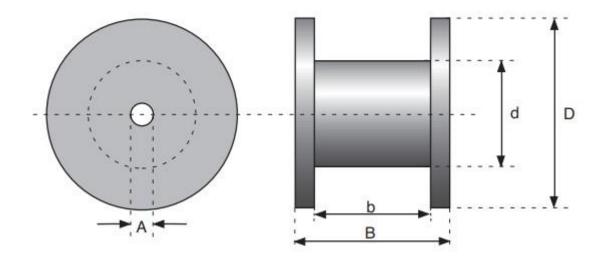
Vérification de la chute de tension:

 $\Delta U = 1,01 V par A par km (tableau 9B)$

 ΔU = 1,01 . 78 A . 0,26 km = 20,5 V = 5,1 % de la tension nominale

e) Chute de tension au démarrage

I démarrage = $3 \times In = 234 \text{ A}$; $\cos \varphi = 0.3$


$$\Delta U = \sqrt{3} \cdot 0.26 \text{ km} \cdot 234 \text{ A} \cdot (0.671 \frac{\Omega}{\text{km}} \cdot 0.3 + 0.089 \frac{\Omega}{\text{km}} \cdot 0.95)$$

 $\Delta U = 30.1 V = 7.5 \%$ de la tension nominale

N.B. Au démarrage des moteurs, on admet généralement une chute de tension allant jusqu'à 10 %.

6. Caractéristiques des tourets

ТҮРЕ	D cm	d cm	B max.	b min. cm	A mm	charge max. kg	poids kg
706	60	30	52	40	65	220	15
708	80	40	64	50	65	500	40
710	100	50	74	60	65	900	72
712	125	63	86	70	90	1700	124
715	150	75	99	80	90	2700	200
717	175	95	112	90	90	4000	380
720	200	110	124	100	120	5500	440
722	225	135	132	105	120	7000	600
725	250	150	141	114	120	8500	800

Contenance des tourets (valeurs indicatives)

Contenance du touret en m par type de bobine

Diamètre extérieur du câble en mm

ntenance (706	708	710	712	715	717	720	722	725
6	1326	3597							
8	746	1921	4121						
10	502	1295	2637						
12	331	854	1738	3392					
14	249	605	1311	2492					
16		480	977	1947	3359				
18		379	803	1507	2697				
20		296	659	1271	2150				
22			537	958	1691				
24			434	796	1445	2119			
26				752	1231	1819			
28				623	1044	1557			
30				509	879	1326	2027		
32					839	1121	1747	2143	
34					702	1072	1497	1838	
36					674	900	1435	1758	2305
38						864	1222	1501	1987
40						717	1177	1442	1909
42						692	994	1220	1636
44						565	960	1177	1578
46						547	801	985	1340
48							776	952	1296
50							753	923	1256
52							618	760	1055
54							601	738	1024
56							585	717	846
58								579	823
60								563	801
62								549	781
64								535	632
66								419	616
68								409	602
70									589
72									462
74									452
76									

Malmedyer Str. 9 - 4700 EUPEN - BELGIUM